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Abstract

Understanding how an educational intervention is implemented is essential to evaluating its
effectiveness. With the increased use of digital tools in classrooms, however, traditional methods
of measuring implementation fall short. Fortunately, there is a way to learn about the
interactions that users have with digital tools that are embedded into the technologies
themselves: user data. The purpose of this article is to outline ways in which researchers can
harness learning analytics and user data to gain a deeper understanding of the implementation
of digital innovations and their impact on teaching and learning. We discuss four considerations
for the integration of learning analytics and user data in implementation research, and we
provide an example of integration from an evaluation of a digital science curriculum,
STEMscopes. (Keywords: implementation research, learning analytics, digital learning)

nderstanding how an educational intervention is implemented in the classroom is essential to

evaluating its effectiveness (Century, Cassata, Rudnick, & Freeman, 2012; Durlak & DuPre,

2008; Franks & Schroeder, 2013; Hagermoser Sanetti & Kratochwill, 2009; Nelson, Cor-
dray, Hulleman, Darrow, & Sommer, 2012; Song & Herman, 2010). Recent interest in implementa-
tion is due in large part to state and federal requirements that schools implement evidence-based
educational resources (e.g., Reading First, Race to the Top, Investing in Innovation). In response to
the demand for a deeper understanding of how implementation influences the effectiveness of inter-
ventions, researchers have designed new protocols for measuring the different dimensions of imple-
mentation, including surveys, logs, and observations.

With the increased use of digital and online tools in classrooms, however, traditional methods of
measuring implementation fall short. Digital interventions can include computer programs, soft-
ware, and websites that provide content, tutoring, assessments, simulations, and games, and often
are utilized by hundreds of thousands to millions of students. For example, programs such as
DreamBox Learning, A2i, Assistments, READ180, ST Math, Reasoning Mind, and Khan Acad-
emy, among many others, offer a wide variety of online activities, assessments, and even “adaptive”
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algorithms, and are becoming more common in classrooms across the country. When a user (e.g.,
student or teacher) interacts with these programs, most to all of the interaction is between the user
and the program. As such, understanding how the system is being implemented, and therefore its
impact on learning, requires data about those interactions, which cannot be captured reliably via
observations or surveys.

Scholarly research has struggled to keep up with the rapid proliferation of digital tools (Bienkow-
ski, Feng, & Means, 2012; Means, Anderson, & Thomas, 2012). Much of the research that does exist
documents programs developed before the most recent increase in interest and use of digital tools
(Chumley-Jones, Dobbie, & Alford, 2002; Means, Toyama, Murphy, Bakia, & Jones, 2010) and does
not examine differences in levels of utilization (we discuss recent exceptions later). Fortunately, there
is a way to learn about those interactions that is embedded in the digital technologies themselves:
user data. The analysis of educational user data has become commonplace in the rapidly growing field
of learning analytics (LA), which uses diverse data sources—including learners’ and educators’ inter-
action data, data mining techniques, and theories from information sciences, psychology, cognitive
science and other disciplines to understand and improve “learning and the environments in which it
occurs,” (Siemens, 2012, p. 1). Together with more traditional measures of implementation, user data
can help create a richer picture of the implementation and impact of digital innovations.

The primary purpose of this article is to outline ways in which researchers can harness the poten-
tial of LA techniques and user data to gain a deeper understanding of how digital innovations are
being implemented in and out of classrooms and their impact on teaching and learning. We also pro-
vide an example from a recent evaluation of a digital science curriculum, STEMscopes, of how user
data and LA techniques can be integrated into program evaluation in education. To conclude, we
discuss challenges to the integration of LA techniques and user data, as well as potential solutions.

Literature Review

Measuring Fidelity of Implementation

Best practices in measuring implementation are still debated. Generally, implementation refers to
how an innovation is used (Song & Herman, 2010), and fidelity of implementation is “the extent to
which an enacted program is consistent with the intended program model” (Century, Rudnick, &
Freeman, 2010, p. 2).

Researchers and policymakers understand the importance of measuring implementation because
many innovations do not have the intended impact, often due to the innovation not being imple-
mented as intended—an occurrence that Franks and Schroeder (2013) refer to as “Type III error.”
Indeed, early research on implementation came out of evaluations of the impact of federal programs
implemented in the 1960s and 1970s, as well as evaluations of large-scale curriculum reform. As
part of these evaluations, researchers found that a key reason that the programs did not have their
intended impact was that “local actors” (e.g., teachers) took the interventions and adapted them to
their local contexts and needs instead of using them exactly as the developers intended (Berman &
McLaughlin, 1976; Fullan & Pomfret, 1977; McLaughlin, 1976).

Implementation research focuses on what happens when an innovation enters a community,
school, or other organization. There are two components to the study of implementation: fidelity of
implementation and the process of implementation (Fullan & Pomfret, 1977; Scheirer & Rezmovic,
1983). Fidelity addresses the organizational and curricular changes that do or do not take place as
intended by the new innovation, while the implementation process refers to the ways in which local
agents adapt the innovation.

The focus of this article is on fidelity of implementation (FOI). As recent research has noted,
there is a growing amount of literature on “implementation science,” or the measurement of FOI,
with many authors giving different names to very similar constructs (Century et al., 2012; Nelson
et al., 2012). Here, we briefly highlight similarities across some of this work to focus on where the
use of LA techniques and user data may be appropriate.
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Table 1. Traditional Measures of Fidelity of Implementation

Adherence Dosage Quality Participant Engagement
Teacher Self-Reports Teacher Logs or Checklists Teacher Self-Reports Surveys
Observations Extrapolations based on observations ~ Observations Ways to rate “the extent to which

of a sample of lessons participants are engaged by and

involved in the activities and content
of the program” (244)
Attendance data

Researchers agree that FOI is a multidimensional construct. Dane and Schneider (1998) were
among the first to outline what these dimensions were and how to measure them. They defined FOI
generally as “program integrity” and argued that it had the following five dimensions: adherence,
exposure/dosage, quality of delivery, responsiveness of participants, and program differentiation.
Since then, other researchers have built on this foundation, with some changes being small and
others more substantive. In our review, we found a great deal of overlap across much of it, and in
attempting to delineate where LA techniques and user data may fit, we try to draw parallels across
different work and terminology.

There are several ways to gather data to measure the multiple dimensions of FOIL. Dane and
Schneider (1998), for example, proposed the methods summarized in Table 1 as potential tools for
data collection. Similarly, if one reviews recent program evaluations, several different kinds of data
collection methods make an appearance: teacher checklists, observation protocols, teacher surveys,
and even student interviews or surveys (Quint et al., 2013).

Traditional methods of data collection are necessary but not sufficient for understanding the
implementation of digital classroom tools. Traditional methods cannot capture a complete picture of
how a digital device is being used because much of the use occurs between a user and the system/
device, and therefore is not easily observable, if observable at all. Research is beginning to incorpo-
rate new measures of use to account for this change. For example, in an evaluation of the Acuity
Data System, Wayman and colleagues (2009a, 2011) integrated teacher use logs as a measure of
implementation. Similarly, in an evaluation of the online math program DreamBox Learning,
researchers examined the number of hours students were actively working on the program, data
they were able to pull from the program itself (Wang & Woodworth, 2011). In a study of the imple-
mentation of an online science inquiry program, researchers utilized student participation data that
the program collected as part of its design (Penuel & Means, 2004). Other studies also have consid-
ered the relationship between usage and outcomes (Doan, Zhang, Tjhi, & Lee, 2011; Loftus, 2012;
Turner, 2010; Yu & Jo, 2014). However, none of these examples used digitally generated data in a
rigorous way by articulating how these data fit within current frameworks of FOI and none utilized
LA techniques to uncover patterns of use.

The purpose of this article is to sketch out a more disciplined approach to incorporating LA tech-
niques and user data into the study of FOI and evaluation of digital educational innovations. First,
we do this by outlining considerations for working with LA techniques and user data. Then we build
on our past work experimenting with different LA techniques (Monroy, Rangel, & Whitaker, 2013,
2014) and develop new variables that are meant to measure different kinds of utilization.

Learning analytics research. Learning analytics is an emerging field of research that applies
statistical methods, theories, and models to the analysis of large and diverse educational data sets
(Bienkowski et al., 2012). In education specifically, researchers can analyze different kinds of user
data to make inferences about how teachers and students are interacting with technology. Here we
briefly describe two current areas of research within the realm of LA and educational data mining.

The first area, which is of great interest to educators, is the impact of an intervention on student
outcomes. This kind of research is more common in higher education to help retain students and
improve outcomes (Dietz-Uhler & Hurn, 2013; Olmos & Corrin, 2012; Smith, Lange, & Huston,
2012). In grades K—12, researchers use student data to predict future achievement, as is the case
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with the ASSISTments initiative at Worcester Polytechnic Institute, which has produced a corpus of
LA research ranging from measuring ASSISTment’s effect on math achievement (Koedinger,
McLaughlin, & Heffernan, 2010) to comparing the effect of traditional and computer-supported
homework on student outcomes (Mendicino, Razzaq, & Heffernan, 2009). Similarly, using data
from users interacting with videos in the Khan Academy, Munoz-Merino, Ruipérez, and Delgado
(2013) proposed a set of variables to measure diverse learning constructs. Data on student interac-
tions also can uncover misconceptions about content and can be used to create sophisticated algo-
rithms that recommend appropriate activities and interventions to maximize achievement (Corbi &
Burgos, 2014; Khribi, Jemni, & Nasraoui, 2015; ézyurt, Ozyurt, Baki & Giiven, 2013).

A second area of research has used LA to gain insight into student thinking and behaviors. For
example, Andergassen, Modritscher, and Neumann (2014) used log data from a learning management
system (LMS) to analyze exam preparation behaviors, finding that practice and repetition were posi-
tively correlated with final exam grades. Other researchers have identified behaviors associated with
negative learning outcomes, such as cheating (Baker, Corbett, Koedinger, & Wagner, 2004; Cocea,
Hershkovits, & Baker, 2009), discerning a student’s level of motivation and engagement through the
analysis of time stamps (D’Mello, Olney, & Person, 2010; McQuiggan, Mott, & Lester, 2008), and
students’ affective state and its role in the learning process (D’Mello, Lehman, & Graesser, 2011).
Researchers have also investigated how educational data mining and LA might help us understand
metacognition and motivation to learn (Pardos et al., 2014; Winne & Baker, 2013).

Theoretical Framework

Learning Analytics in Evaluation and Implementation Research

We propose a new area for growth for the field of LA in implementation and evaluation research.
Specifically, educational researchers should leverage LA techniques along with teacher and student
data to measure three of the dimensions of fidelity of implementation, summarized in Table 2. First,
LA techniques and user data can provide a measure of adherence, that is, whether a user is utilizing
the digital innovation in the intended way. This can help the researcher uncover patterns in how a
user interacts with the program, including the order in which resources were accessed, how long a
user remained on a given resource, and with what actions in that resource the user engaged. Second,
LA techniques and user data can measure dosage or exposure, or how frequently and for how long
a user engages with the digital innovation. Third, they can measure how engaged a user is with the
digital innovation by looking at, for example, time spent on a page or component or how quickly a
user moves through components. Researchers can learn more about the impact of implementing dif-
ferent components of a digital innovation on student learning by examining how a user interacts
with the various components and weighing these data with other dosage data to estimate the impact
of different components (Nelson et al., 2012).

It is worth emphasizing that using user data do not (and should not) supplant existing fidelity
measures; rather, they can complement them. User data can provide varying levels of information
on the interaction between the user and the digital innovation, but they do not capture the quality of
that implementation. For this reason, it is important to complement the use of LA techniques and
user data with observations, interviews, and other traditional measures of FOI.

Table 2. Dimensions of Fidelity of Implementation and User Data

Dane & Schneider, 1998; Hagermoser, Sanetti,

Nelson et al., 2012 & Kratochwill, 2009 Century et al., 2012 User Data
Adherence Content FOI of instructional materials X
Exposure Quantity Structural/ procedural X
Quality of delivery Quality/process Instructional/pedagogical

Participant responsiveness Student engagement X
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Considerations for utilizing LA techniques and user data. LA techniques and user data can
shed light on how digital interventions are used. In order to realize this potential, however, there are
several considerations that should be addressed.

First, what are the user data measuring? The answer is contingent on the architecture in place,
that is, the way the website or program is set up. Different configurations allow for the collection of
different kinds of data, which will be more or less fine-grained. Ideally, the system should collect
very fine-grained data that can become rich information about user engagement and learning, but
this level of data capture is far from ubiquitous, particularly in K—12 education.

A second consideration is data reliability and validity. Reliability and validity are closely tied to
the first question—what is being measured. For example, many websites, including the one evalu-
ated here, collect only “page clicks,” and these clicks may not tell us what we think they are telling
us. That is, unfiltered page clicks capture a wide range of movement through a website, including
accidental clicks, exploratory clicks, and engaged clicks. It is difficult to know how to differentiate
among these actions.

Researchers may weigh different options to address these two challenges. One approach is to cre-
ate a more complex event capture system so that the data collected are more fine-grained. For exam-
ple, in order to study engineering design processes among high school students, Xie and colleagues
implemented a methodology that used computer-aided design (CAD) logs data (Xie, Zhang,
Nourian, Pallant & Bailey, 2014; Xie, Zhang, Nourian, Pallant, & Hazzard, 2014). These data corre-
spond to all interactions in a CAD tool. A second approach would be to create filters that set thresh-
olds for when data will be categorized as a particular event, which allows researchers to begin to
differentiate among events based on specific parameters. For example, we could determine when a
particular instructional component should be considered “viewed” by requiring that a student must
watch a certain percentage of a video.

A third solution would be to incorporate metadata (event descriptors) or semantic information
into the analytics data. For example, a click on a simulation game can be associated with a particular
activity embedded within a larger lesson cycle. Semantic information refers to descriptions about
relationships or properties about events. For example, using resource X followed by activity Y can
be categorized as scaffolding learning (supporting the student as he or she moves to the next level
of instruction), whereas using resource X followed by activity Z may be a learning experience at the
same level of instruction. With these more sophisticated data, researchers can, for example, identify
different sequences of events within a given period of time that are associated with one specific
learning activity. Taken together, a pattern of sequenced events might then represent a broader les-
son and have implications for the pedagogy underpinning the lesson and its activities. Researchers
also can examine the time elapsed between events and the overall duration of a sequence to better
understand the effect of sequencing and pacing on learning outcomes.

A third consideration is access to technology. Technology access can be a challenging barrier to
overcome for digital interventions and the barrier remains quite widespread, particularly in low-
income communities (Mossberger, Tolbert, & Gilbert, 2006; Warschauer & Matuchniak, 2010).
When students do not have access to computers or devices, it is likely that analysts will encounter
additional reliability problems in the data collected. For example, if a classroom does not have
enough computers, it may be difficult to implement the program as intended (Heffernan, Militello,
Heffernan, & Decoteau, 2012).

A fourth consideration is data privacy. Though a full discussion of the ramifications of working
with user data and so-called “big data” is beyond the scope of this article, it is worth raising this
issue. Improvements both in digital educational programs and in LA techniques mean that develop-
ers and researchers have access to unprecedented amounts of user data, both for teachers and stu-
dents. In most cases, users agree to a program’s terms of use without fully understanding what they
are agreeing to, subsequently handing over data to developers and researchers (Rowan & Dehlinger,
2014; Solove, 2013). Willis, Campbell, and Pistilli (2013) discuss some ethical considerations for
using learning analytics in higher education, given how much we can learn from these data, and
many of these considerations apply to K—12 education.
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An Example of LA Integration Into Program Evaluation

Our thinking on the utility of learning analytics and user data has emerged from our ongoing work
in program evaluation. As part of an evaluation of a digital science curriculum in which teacher
user analytics data have been central, we have experimented with different ways to manipulate
teacher user data, using techniques from LA, to measure teacher implementation of the curriculum.
We used the following research questions regarding the implementation and impact of the curricu-
lum to guide our analyses:

(1) How did teachers use the curriculum?
(2) Was teacher use of the curriculum associated with student performance on the state science test?

Question 1 asks about FOI, while question 2 asks about the associations between FOI and stu-
dent learning outcomes.

Method

Program Description

The commercially available curriculum under examination, STEMscopes (http://acceleratelearning.
com), is a comprehensive online science curriculum that provides hands-on inquiry activities,
assessments, problem-based learning (PBL) activities, intervention tools, acceleration materials,
and teacher resources for grades K—12, although this study focuses on elementary schools only. The
curriculum is meant to be implemented in a “blended” classroom, where some activities are com-
pleted online while others are completed face-to-face. In the case of the version of the curriculum
we evaluated and report on here, all of the materials were housed online, but most of the activities
are completed face-to-face. The majority of interactions with the curriculum logically came from
the teachers as they accessed activities, read content background information, or downloaded stu-
dent worksheets. For this reason, we focused data collection and analysis efforts on teachers’ use of
the curriculum.

Pedagogical foundations. The curriculum is a variation the 5SE model (Bybee et al., 2006;
Zuiker & Whitaker, 2014) and offers several activities for each of its steps. The 5E refers to five
“steps” of learning science: engagement, exploration, explanation, elaboration, and evaluation. In
addition to these five steps, the curriculum adds two steps to help teachers differentiate their instruc-
tion according to what their students need, making it the SE + I/A model. The first of these extra
steps, Intervention, comprises activities that provide students with additional opportunities to master
content and teachers with additional tools to assess whether students have mastered the content after
the intervention. The second of these steps, Acceleration, provides activities for students who have
demonstrated mastery of the content and are ready to extend or apply their learning through short
projects, including PBLs and science-related art (Zuiker & Whitaker, 2014).

Critical components. In the curriculum, there is a hierarchy of critical components. Century
et al. (2012) define critical components as “the intervention components that developers believe are
essential to achieving desired outcomes as a result of innovation implementation” (p. 348). The cur-
riculum’s components can be divided into groups according to the SE + I/A pedagogical model and
are summarized in Table 3. In the Engage component, there are supports for teachers and activities
for students to complete in order to pique students’ interest and activate their existing content
knowledge. Explore centers around a hands-on activity and teacher materials to facilitate these
activities. Explain provides an opportunity for students to reflect on the Explore activity and to artic-
ulate their understanding of the content in their own words.

The remaining steps provide opportunities to extend and evaluate students’ learning and to sup-
port students who have not mastered the content. In Elaborate, there is a third hands-on activity and
ideas to extend students’ learning. The Evaluation step focuses on formal assessment of what stu-
dents have learned and offers several different kinds of assessments. The final two columns,
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Intervention and Acceleration, offer additional activities to support students struggling to under-
stand the content and to challenge students who have demonstrated mastery.

Analytics architecture. STEMscopes data sets are updated in real time as teachers and students
interact with the curriculum (e.g., click on resources in the website). Therefore, the volume of data
stored and processed grows constantly, with an average of a 250,000 daily interactions during the
2012-2013 school year. To tackle this problem, we have implemented a distributed data warehouse
environment, employing four separate high-end computers. Anonymized event data generated by
users interacting with the curriculum are processed, and then analytics variables are calculated and
aggregated at different levels such as by user (teacher or student), school, and district. Currently,
our data include information about teacher and student page visits by science standard, pedagogical
step (SE+I/A framework), and activity used, but, as mentioned earlier, most components on this
version of the curriculum are meant for teacher use, and those meant for students comprised only
online games and assessments. Analytics variables are also calculated at the end of each week,
month, and year. For a more detailed description of the architecture and ongoing work, see Monroy
et al., 2013 and 2014.

Data collection. As part of the program evaluation, we collected FOI data in several ways,
including classroom observations, teacher surveys, teacher interviews, and user data. These data
were collected in a large, urban school district in Texas. Here we focus on how we utilized LA tech-
niques together with teacher user data to examine how teachers in this district used the curriculum,
and what these data revealed about implementation fidelity. We also compare the user data to the
survey responses to examine the discrepancy between the two.

We administered a teacher survey in January 2013 and received student and teacher data from the
district, including demographics and student science scores from the 2012-2013 school year. The
user data consisted of page visits, where one data point is an instance when a teacher accessed a
component on the curriculum’s webpage (in this study, we did not collect student learning analytics
data because of a lack of access to computers in classrooms).

Teacher survey. We administered an online survey to teachers with active STEMscopes
accounts in the target school district. The survey, adapted the survey from the Survey of Educator
Data Use (Wayman, Cho, & Shaw, 2009b), asked teachers about themselves and their classroom,
and also measured seven concepts related to science, the curriculum, and technology in the class-
room. The scales of interest in this study was the Use of SE + I/4 scale (8 items), which asked
teachers to report how frequently they used each of the steps from the SE + I/A model (reliability
for this scale was 0.91, as measured by Cronbach’s alpha).

In this particular district, only about 30 schools were using the curriculum at the time of the sur-
vey because it had not been adopted district-wide. The survey was administered to 755 teachers at
schools with curriculum accounts in the district. We selected these teachers randomly by loading
the full population of teachers at schools with accounts (approximately 1,500) into the software
package, SPSS 20.0, and requesting that it select a random sample of 755, or about half of the full
population (we did not use the full population at the request of the district). Of the 755 teachers sur-
veyed, 210 teachers responded, for a response rate of 28% (we tried to increase response rate by
offering an incentive and by requesting support from the district; the district declined to provide any
assistance). The sample we utilized for these analyses was further refined when we matched

Table 4. Descriptive Statistics for Teachers Completing Survey

Years experience in teaching 0-5 6-10 11-20 20+ years
38.50% 17.90% 28.20% 15.40%

Access to computers in classroom 1-3 4-6 7-10 One for each student
52.10% 40.80% 5.60% 1.4

Years using curriculum First year Second year Used predecessor
58.4% 28.6% 13.0%

Training on curriculum None 1 hour 2 hours 3 hours
52.60% 26.90% 14.10% 6.40%
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Table 5. Use Indices Combining User and Survey Data

Variable Definition

Engage Index Average use of Engage from analytics and survey responses
Explore Index Average use of Explore from analytics and survey responses
Explain Index Average use of Explain from analytics and survey responses
Elaborate Index Average use of Elaborate from analytics and survey responses
Evaluate Index Average use of Evaluate from analytics and survey responses

teachers’ survey responses to their user data. There were several reasons for this, including deleted
accounts, and in the end we worked with a smaller sample of teachers who had both survey
responses and user data. Table 4 provides descriptive data for the teachers in this sample.

User data. Currently, the architecture supporting the online science curriculum allows only for the
tracking of page visits, so all of the data we collected consisted of instances when a teacher accessed a
particular page of the curriculum, regardless of what the teacher does or how long the teacher is on the
page (Monroy et al., 2013, 2014). This architecture, therefore, imposes important limits on the analy-
ses: We cannot be sure exactly what kind of activity or what level of engagement the data are measur-
ing, so the validity of the data can be questioned. As a result, the teacher user data we used in this
analysis measured dosage—frequency of access to the curriculum—and did not allow us to measure
adherence or other dimensions of FOL. More robust data analytics frameworks would allow research-
ers to measure the dimensions discussed earlier. The limits imposed by the user data mean that it is
even more important to triangulate—to combine the user data together with other, more traditional,
measures of utilization or implementation. The work presented here represents an initial step toward
more sophisticated analyses and still provide lessons for researchers doing similar work.

Though we had access to data for every single activity within the curriculum, we decided to focus
only on the critical components. We also created a set of variables that combined the user and survey
data for each teacher (see Table 5). These variables were meant to help us triangulate—to bring
together two different measures of the same behavior to try to paint a more complex picture of teacher
utilization. We recognize that creating a detailed, valid, and reliable measure of instruction is more
complex than what we are able to accomplish here, but this is one step toward creating new measures.

District data. District data were collected including demographic data for fifth-grade science
teachers, and demographic and achievement data for fifth-grade students for the 2012-2013 school
year. For students, data included sex, race/ethnicity, socioeconomic status, and certain academic
data (e.g., limited English proficiency status, special education status, and gifted and talented status)
because the literature on student achievement suggests they all are important demographic

Table 6. Descriptive Statistics of for Fifth-Grade Teachers and Students Matched to District Data

Variable STEMscopes Schools

Fifth-grade teachers n=18
Average teacher experience 12.2 years
Average number of students 48.6
New teachers 38%

Fifth-grade students n=916
Female 48%
White 3%
African American 14%
Hispanic 82%
Asian 1%
Multiracial <1%
Other race/ethnicity <1%
Free/reduced lunch 57%
Limited Engish proficiency (LEP) 57%
Bilingual (BIL) 31%
English as a second language (ESL) 1%
Special education 9%
Gifted/talented 23%
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predictors. For teachers, data included whether a teacher was new to the profession and years of
teaching experience, both of which have been shown to help explain teacher effectiveness. Once we
matched data from the survey and the teacher user data, we ended up with 18 fifth-grade teachers.
Of these 18 fifth-grade teachers, 38% of them were new, and the average number of years of experi-
ence was 12.2 years (see Table 6 or complete demographic data).

Data analysis. To answer research question 1, we describe teacher use of the curriculum as
measured by the survey and user data in order to give an overview of how the picture of use varied
across the two measures.

For research question 2, we utilized hierarchical linear modeling (HLM) to estimate the associa-
tion between teacher use of STEMscopes on students’ scores on the state science achievement test
(STAAR) given to fifth-grade students at the end of the 2012-2013 school year. HLM allows the
researcher to control for possible confounding factors at each level of analysis (e.g., gender, ethnic-
ity, etc.) and to take into account the nested structure of the data (Raudenbush & Bryk, 2002). We
estimated a two-level HLM model with students at Level 1 and teachers at Level 2. Level 1 predic-
tors were centered at the group mean in order to create Level 1 coefficients that were independent
from Level 2 variance, and Level 2 predictors were centered at the grand mean to create Level 2
coefficients centered around the average score of all schools for interpretability (Enders & Tofighi,
2007; Raudenbush & Bryk, 2002).

We experimented with the different variables as ways to measure dosage. First, we analyzed the stu-
dent test scores utilizing only the teachers’ survey responses related to their use of the SE model. Then,
we conducted the same analyses using only the teachers’ user data describing their access of the SE
model. Finally, we created indices that combined the teachers’ survey responses and their user data as
a way to triangulate the two. The equation for the final multilevel models can be seen in Equation 1:

Levell : STAAR Science Score;; = fy; + By;(Sex) + B,;(Race/Ethnicity)
+ B3j(Free/Reduced Lunch Status) + B,;(LEP) + Bs;(Bilingual)
+ Be;(ESL) + B7;(Special Education) + f;(Gifted/ Talented) + r;;
Level2 : B = yo + Vo1 (Teacher Use) + u;

(D

Results

Research Question 1

Research question 1 asked how teachers used STEMscopes in the classroom. We explored this
question using various types of data and here we begin by discussing trends in teacher use that the
survey and user data revealed.

Teacher survey. The survey asked teachers how often they used the components of the curricu-
lum. The survey items gave us information on dosage, or frequency of use, and on adherence, since
one of the items also asks teachers how often they use the steps in order. The survey results revealed
“medium” use of the curriculum and some of its core components (see Table 7). The two most used
steps were Explain and Evaluate, though use of Explore and Engage was not too much lower.

Table 7. How Often Do You Use the Following Categories in Your Lessons?

Lesson Category Every TEKS Most TEKS Some TEKS No TEKS
Engage 17% 38% 36% 9%
Explore 19% 38% 35% 8%
Explain 20% 33% 39% 8%
Elaborate 13% 28% 46% 13%
Evaluate 24% 30% 36% 10%
Intervention 7% 15% 60% 18%
Accelerate 4% 9% 57% 30%

In order? 22% 33% 37% 8%
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Distribution of Visits
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Figure 1. Distribution of visits across teachers, by 5E + I/A step.

Teachers reported rarely using the two additional steps, Intervention and Accelerate. In the next sec-
tion, we present descriptive results of teacher use derived from the user data collected for teachers
with active STEMscopes accounts in the district.

Teacher user data. We used the teacher user data to measure dosage and adherence. The level
and kind of use that emerged from the user analytics data are similar to what we learned from the
teacher survey. When examining aggregate teacher use of the SE + I/A steps (see Figure 1), the
most frequently visited steps were Explore, Engage, and Explain. The least used steps were Inter-
vention and Acceleration. One clear difference is that the Evaluate step was not the most visited
step, and yet, according to the survey, Evaluate was the step that teachers used most frequently.

Research Question 2

In research question 2, we examined how different measures of teacher use were associated with
student state science scores, measured by the STAAR exam, controlling for important student
demographic covariates. The first model we estimated examined associations between teacher sur-
vey responses about their use of the primary 5E steps and student STAAR scores. We included their
responses to all five items in the model and found that only their reported use of the Engage step
was significantly related to student scores, and this relationship was negative: The more teachers
reported using the Engage step, the lower their students’ scores were (see Table 8).

Table 8. Associations Between Reported Use and Student Science Scores

STAAR Science Scores
Predictor B SE p Value
Teacher-level predictors
Engage —174.42* 74.42 .039
Explore 130.76 60.56 .054
Explain —27.22 42.09 531
Elaborate 27.43 56.33 .636
Evaluate 88.97 45.54 .077
Student-level predictors
Sex —76.62* 23.86 .001
Racef/ethnicity 116.15** 27.80 <.001
Free or reduced lunch -2.12 3.47 542
Limited Engish proficiency (LEP) 22.82 16.87 A77
Bilingual (BIL) —53.12*** 7.36 <.001
English as a second language (ESL) —204.25 149.37 172
Special education —395.64*** 42.83 <.001
Gifted/talented 361.64*** 32.47 <.001

Note. Science scores represent student scaled scores (Range = 1,000—6,000).
***p<.001.**p < .01.*p <.05.
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Table 9. Associations Between Teacher Analytics Data and Student Science Scores

STAAR Science Scores
Predictor B SE p Value
Teacher-level predictors
Engage -1.50** 0.47 .009
Explore 0.36* 0.13 .021
Explain 0.17 0.92 .860
Elaborate 1.10* 0.38 .015
Evaluate 0.95 0.52 .092
Student-level predictors
Sex —76.63" 23.84 .001
Race/ethnicity 105.45*** 27.07 <.001
Free or reduced lunch -2.13 3.47 .539
Limited Engish proficiency (LEP) 21.48 16.76 .200
Bilingual (BIL) —51.29*** 7.34 <.001
English as a second language (ESL) -181.00 148.79 224
Special education —397.90*** 42.73 <.001
Gifted/talented 368.21*** 32.48 <.001

Note. Science scores represent student scaled scores (Range = 1,000-6,000).
***p < .001.**p <.01. *p <.05.

We then estimated a model that incorporated the teacher user data, which produced similar
results. Teacher access of the Engage step continued to be negatively related to student science
scores. We also found, however, that teacher access of the Explore and Elaborate steps was posi-
tively related to student scores, but the effects were smaller (see Table 9).

Finally, we estimated a model using the indices we created combining the survey data and the
user analytics data (see Table 10). Three of the SE indices were related to student scores. Teacher
use of the Engage step, as measured by teacher survey responses and user data, continued to be neg-
atively associated with student science scores. However, teacher use of the Explore step and teacher
use of the Elaborate step were positively associated with student science scores. To summarize,
teachers’ reported use of the Engage step was negatively related to student achievement; however,
when we examined teacher use as measured by the user data and then as measured by our indices,
we observed different results: In addition to a significant, negative relationship between teacher use
of the Engage step, we also found two positive relationships, between teacher use of Explore and
Elaborate and student achievement.

Table 10. Associations the 5E Indices and Student Science Scores

STAAR Science Scores
Predictor B SE p Value
Teacher-level predictors
Engage Index —3.00* 0.95 .009
Explore Index 0.72¢ 0.27 .020
Explain Index 0.34 1.84 .858
Elaborate Index 2.19* 0.76 .016
Evaluate Index 1.89 1.02 .092
Student-level predictors
Sex —76.63** 23.84 .001
Race/ethnicity 105.43** 27.07 <.001
Free or reduced lunch —-2.13 3.47 .539
Limited Engish proficiency (LEP) 21.47 16.76 .201
Bilingual (BIL) —51.28*** 7.34 <.001
English as a second language (ESL) —180.97 148.78 224
Special education —397.93*** 42.72 <.001
Gifted/talented 368.24*+* 32.48 <.001

Note. Science scores represent student scaled scores (Range = 1,000-6,000).
***p < .001.**p <.01. *p <.05.
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Discussion

The primary purpose of this article was to discuss how user data and LA techniques can be incorpo-
rated into educational research, particularly implementation research. In this way, our work here
responds to Hulleman and Cordray’s (2009) recommendation that researchers find ways to combine
different implementation measures to better understand the impact of utilization. Together, user data
and learning analytics can contribute to a more nuanced understanding of implementation, and of
the impact of implementation on learning outcomes. We believe user data and learning analytics
will become indispensable tools for educational researchers as digital interventions become more
widespread and budgets become tighter, requiring educators to vet the efficacy of digital interven-
tions very carefully.

The second purpose was to demonstrate one way these data can be incorporated to examine fidel-
ity of implementation. For this reason, we were less interested in the actual results of the analysis
than in the story that the data told about the extent and impact of teacher implementation of the cur-
riculum. Importantly, the survey results and the results of the user data analysis were not identical,
which suggests either that they are not, in fact, measuring the same underlying behavior (i.e.,
teacher implementation of the curriculum), or that they measure differences that stem from the per-
spective from which the data capture implementation. In other words, the survey results represent
self-report data, while the user data represent a digital footprint of sorts (Snodgrass Rangel, Monroy,
Bell, & Whitaker, 2013).

Future research should include additional traditional measures of FOI, such as observations,
interviews, use logs, and so on. Future work also will have to contend with the considerations
relating to what is being measured, data reliability and validity, and technology access. In our
analyses, we utilized user data and teacher survey data as complementary measures of dosage and
adherence, but were not able to utilize user data to capture other dimensions of FOI. Researchers
who decide to incorporate user data into their evaluations and other analyses of digital interven-
tions similarly should identify the limits of the data to which they have access and try to move
past that challenge by working with technology developers and school districts to improve their
analytics infrastructure.

The second consideration, data reliability and validity, also is key. Our research team was
in agreement that our data were limited because they only measure page visits: One cannot
know for how long a user was on a page (e.g., did the teacher reach a page by accident?),
what a user did on a page (did he or she scroll up and down? right-click?), or whether some-
thing on the page was downloaded and printed for later use. In other words, the more detailed
the data, the more likely it is that they will yield valid and reliable insights. What’s more,
researchers should conduct analyses to confirm the reliability or validity of the data to ensure
the quality of the variables created.

Finally, our research finds additional support for work that points to the persistent limited
access to technology in many public schools; access to computers was a challenge in the district
where this evaluation was conducted. The impact of this divide for researchers is that if teachers
and students do not have regular and reliable access to computers or other digital devices,
teachers and students may not use the program as intended (or at all), and the user data are
unlikely to be valid or reliable. Efforts to ensure access to technology as well as support and
training for appropriate technology use should be a central focus for researchers and developers
of digital instructional resources. As these efforts make progress, incorporating learning analyt-
ics and user data into educational research will become more critical, and this work can serve
as a road map for future work.
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